Semiparametric Estimation in Regression Models for Point Processes based on One Realization
نویسنده
چکیده
We are dealing with regression models for point processes having a multiplicative intensity process of the form (t) b t. The deterministic function describes the long-term trend of the process. The stochastic process b accounts for the short-term random variations and depends on a nite-dimensional parameter. The semiparametric estimation procedure is based on one single observation over a long time interval. We will use penalized estimation functions to estimate the trend , while the likelihood approach to point processes is employed for the parametric part of the problem. Our methods are applied to earthquake data as well as to records on 24-hours ECG.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملEfficient estimation of semiparametric transformation models for counting processes
A class of semiparametric transformation models is proposed to characterise the effects of possibly time-varying covariates on the intensity functions of counting processes. The class includes the proportional intensity model and linear transformation models as special cases. Nonparametric maximum likelihood estimators are developed for the regression parameters and cumulative intensity functio...
متن کاملExtended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy
Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...
متن کاملWavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کامل